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Synopsis

Approximately 90 % of non-medullary thyroid malignancies originate from the follicular cell and are classified as papil-
lary or follicular (well-differentiated) thyroid carcinomas, showing an overall favourable prognosis. However, recurrence
or persistence of the disease occurs in some cases associated with the presence of loco-regional or distant meta-
static lesions that generally become resistant to radioiodine therapy, while glucose uptake and metabolism are
increased. Recent advances in the field of tumor progression have shown that CTC (circulating tumour cells)
are metabolic and genetically heterogeneous. There is now special interest in unravelling the mechanisms that allow
the reminiscence of dormant tumour lesions that might be related to late disease progression and increased risk
of recurrence. AMPK (AMP-activated protein kinase) is activated by the depletion in cellular energy levels and allows
adaptive changes in cell metabolism that are fundamental for cell survival in a stressful environment; nevertheless,
the activation of this kinase also decreases cell proliferation rate and induces tumour cell apoptosis. In the thyroid
field, AMPK emerged as a novel important intracellular pathway, since it regulates both iodide and glucose uptakes
in normal thyroid cells. Furthermore, it has recently been demonstrated that the AMPK pathway is highly activated in
papillary thyroid carcinomas, although the clinical significance of these findings remains elusive. Herein we review
the current knowledge about the role of AMPK activation in thyroid physiology and pathophysiology, with special focus

~

on thyroid cancer.
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INTRODUCTION

Palpable and non-palpable thyroid nodules are common endo-
crine tumours that can be detected in as much as 70% of a
population if sensitive image-assisted examination methods are
used [1]. Independent variables as gender and age influence the
prevalence of these nodules, with a higher risk for women and
elderly individuals [2].

Although nodular lesions are frequent in the overall popula-
tion, only 5-10% of thyroid nodules correspond to malignant
lesions, and thyroid carcinoma is a rare disease that accounts for
just 1 % of all human cancers, although it is the most common en-
docrine malignancy [1,3]. Approximately 90 % of non-medullary
thyroid malignancies originate from the follicular cell and are

classified as papillary or follicular (well-differentiated) thyroid
carcinomas. DTC (differentiated thyroid carcinomas) are slow
growing tumours that can be curable by the combined effects of
surgery, radioiodine ablation and TSH (thyroid-stimulating hor-
mone) suppressive therapy. However, during tumour progression
that occurs in up to 20-30 % of cases, cellular dedifferentiation is
present, and is usually accompanied by more aggressive growth,
metastatic spread and loss of iodide uptake ability [4].

Four types of genetic alterations comprise the majority of
known mutations in DTC: BRAF and RAS (renin—angiotensin
system) point mutations, and RET/PTC rearrangements for papil-
lary thyroid cancers, and PAX8/PPARy rearrangement in the fol-
licular subtype [5]. The incidence of thyroid cancer has increased
in the past decades in many countries, including Brazil [6-11],
and this increase is mainly due to the rise in the incidence of PTC.

Abbreviations: ACC, acetyl-CoA-carboxylase; AICAR, 5-amino-4-imidazolecarboxamide riboside; AMPK, AMP-activated protein kinase; CTC, circulating tumour cell; DTC, differentiated
thyroid carcinomas; ERK, extracellular-signal-regulated kinase; 18 F-FDG-PET, 18F-fluoro»deoxiglucose positron emission tomography; GLUT, glucose transporters; GLUT1, glucose uptake
and glucose transporter 1; HIF-1, hypoxia-inducible factor 1; LKB1, liver kinase B1; mTOR, mammalian target of rapamycin; mTORC1, mammalian target-of-rapamycin complex-1; NIS,
Na* /1~ -symporter; p70S6K, p70 S6 kinase; PI3K, phosphoinositide 3-kinase; PTC, papillary thyroid cancer; PTEN, phosphotyrosine phosphatase; RAS, renin-angiotensin system;

ROS, reactive oxygen species; TCA, tricarboxylic acid; TSH, thyroid-stimulating hormone.
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Jung et al. [12] recently reported that in the USA the overall pro-
portion of BRAF mutations remained stable, the percentage of
RET/PTC rearrangements decreased, while there seems to be a
rise of the follicular variant histology subtype and RAS mutations
incidence after 2000.

The adequate intervention for DTC vary depending on the dis-
ease stage, rather than the different causative mutations. In the
past 10 years, risk stratification systems were reported in order
to try to better establish the adequate intervention for each pa-
tient [13,14]. In this context, the serum levels of thyroglobulin,
anti-thyroglobulin and the identification of structural disease by
traditional tomography, scintigraphy with '3'I-radioiodide and
BF-FDG-PET (‘®F-fluoro-deoxiglucose positron emission tomo-
graphy) are very important criteria for assessment of recurrent or
persistent disease. Indeed, the increase of '*F-FDG uptake asso-
ciated with a decrease in iodide uptake indicates poor prognostics
[13-15]. These image scans depend on the cellular ability to up-
take either iodide or glucose. Iodide uptake by follicular thyroid
cells is mediated by a transmembrane glycoprotein known as
the NIS (Na*/I~ -symporter), which is a thyrocyte differenti-
ation marker that is lost in the course of thyroid carcinogenesis
[14,16,17]. On the other hand, glucose uptake depends on the
presence of GLUTS (glucose transporters). As a result, there is
a great interest of a better understanding about the regulation of
these transporter systems.

Although, iodide uptake through NIS is involved in both dia-
gnostic and treatment of thyroid cancer, the mechanism underly-
ing NIS expression and subcellular localization in thyroid cells
has not been completely elucidated. Also, the molecular mechan-
isms involved in the metabolic shift that leads to higher glucose
uptake by tumour cells are poorly defined. Recently, we described
that the energy sensor AMPK (AMP-activated protein kinase)
plays an important physiological role in the thyroid gland by reg-
ulating both iodide and glucose uptakes [18,19]. In fact, AMPK
activation in the normal thyrocyte induces a dramatic reduction
of iodide uptake that is accompanied by higher glucose uptake
and utilization by the glycolytic pathway. Until now, only a few
studies analysed the AMPK pathway in thyroid cells, and a re-
cent report shows that the metformin treatment induces thyroid
tumour cell apoptosis [20]. On the other hand, we have recently
shown that the expression and activity of AMPK is increased in
papillary thyroid carcinoma [21].

In this review, we focused on the current knowledge about
NIS regulation by AMPK in thyroid cells and the possible in-
volvement of AMPK signalling pathway in thyroid cancer cell
biology.

AMPK STRUCTURE AND METABOLIC
FUNCTION

AMPK is a metabolic stress-sensing cytosolic enzyme, composed
of an «-catalytic and two regulatory (8 and y) subunits [22].
Stresses that deplete cell energy and increase the intracellular

AMP-to-ATP ratio induce allosteric activation of AMPK, pro-
moting conformational changes that make the enzyme a substrate
for upstream kinases (Figure 1) that phosphorylate its threonine-
172 residue and activate AMPK [22,23]. When activated, AMPK
shuts down cell energy consumption and up-regulates processes
that increase energy production, in an attempt to restore intracel-
lular ATP levels [23]. Indeed, one of the well-described effects
of AMPK is the inhibition of ACC (acetyl-CoA-carboxylase)
enzyme through the phosphorylation of its serine 79. ACC is
responsible for the conversion of acetyl-CoA to malonyl-CoA
in de novo lipid biosynthesis. In turn, manolyl-CoA is a potent
inhibitor of carnitine palmitoyl transferase-1, responsible for the
translocation of long-chain fat acid into mitochondrial matrix.
The reduction of malonyl-CoA induced by AMPK activation is
believed to favour fat acid translocation into the mitochondria
and B-oxidation to increase ATP production [22-25].

AMPK AND THE THYROID GLAND

Our group was the first to describe the expression and func-
tion of AMPK in the thyroid gland, and its ability to regulate
iodide and glucose uptakes in thyroid cells [18,19]. Indeed,
the pharmacologic activator of AICAR (AMPK, 5-amino-4-
imidazolecarboxamide riboside), decreased sodium-iodide sym-
porter expression both at the transcriptional and translational
levels. Moreover, the main stimulator of thyroid gland function,
the thyrotrophic hormone (TSH) inhibits AMPK phosphoryla-
tion and activation [18]. Thus, the pharmacological activation
of AMPK in normal thyrocytes results in decreased iodide up-
take counterbalancing TSH action [18]. We further demonstrated
that AICAR treatment increased GLUT1 (glucose uptake and
glucose transporter 1) protein expression in thyroid cells [19].
Based on these results, we hypothesized that AMPK activation
could be acommon pathway involved in the phenomenon that oc-
curs during thyroid tumour progression, when increased glucose
uptake detected by '8F-FDG-PET is accompanied by decreased
radioiodide uptake ability in DTC [14,15]. However, in a LKB1
(liver kinase B1)- and AMPK-deficient mouse model of Peutz-
Jeghers syndrome, there is up-regulation of mTOR (mammalian
target of rapamycin) and HIF-1 (hypoxia-inducible factor 1) «
transcription factor that leads to higher hexokinase II and Glutl
expression and increased glucose utilization by the tumours [26].
Thus, the interplay between mTOR, AMPK and HIF-1« in the
thyroid remains to be elucidated.

More recently, Abdulrahman et al. [27] confirmed our res-
ults in rat thyrocytes, using metformin that indirectly activates
AMPK. Interestingly, this study showed that AMPK-«1 knock-
out mice have a less active thyroid gland with reduced respons-
iveness to TSH and reduced colloid volume. All these recent
findings demonstrated that AMPK is not only expressed in the
thyroid gland but that it also plays a physiological role in
the thyrocyte.
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Figure1 Schematic representation of AMPK subunits «,f,y

Allosteric activation of AMPK occurs through an increase in the intracellular AMP/ATP ratio that allows upstream kinases
such as LKB1 (liver kinase B1), TAK1 (TGF-g-activated kinase 1) or CAMKKg (Calmodulin kinase kinase ) to phosphorylate
Thr'72 in AMPK a-catalytic subunit. Some drugs are also able to directly or indirectly activate AMPK. Once activated, AMPK
inhibits ATP-consuming process and stimulates ATP synthesis pathways. In the normal thyroid, iodide uptake decreases

and glucose uptake increases by AMPK activation.

AMPK SIGNALLING AND CANCER

The evidence that the tumour suppressor LKB1 is the major
upstream kinase responsible for AMP activation linked for the
first time AMPK activity and cancer development [24]. Since
LKB1 loss-of-function mutations are related to cancer develop-
ment, AMPK was largely believed to be down-regulated in cancer
cells. However, a large controversy exists in the literature in re-
lation to the AMPK pathway involvement in tumourigenesis and
cancer progression.

Several studies demonstrated that activated AMPK causes
cell-cycle arrest associated with stabilization of p53 and de-
creased protein and lipid synthesis and ribosomal RNA [20,28].
Indeed, AICAR-mediated AMPK activation has a strong anti-
proliferative effect in different cancer cell lines [20] and in hu-
man breast cancer samples [29]. Also, AMPK activation shuts
down processes that consume energy through modulation of sev-
eral signalling pathways. One of the most described downstream
targets of AMPK is the inhibition of the serine—threonine protein
kinase mTORC1 (mammalian target-of-rapamycin complex-1)
by phosphorylating its upstream regulator TSC2 (tuberous scler-
osis complex 2) and its regulatory subunit Raptor [24,25,30].

Since the mTOR/p70S6K (p70 S6 kinase) pathway stimulates
cell proliferation and metabolism, the AMPK-mediated inhib-
ition of this pathway corresponds to an important strategy to
restore ATP levels [23-25,30]. These findings are in agreement
with the hypothesis that AMPK inhibition might lead to higher
cell proliferative rates.

Altogether, these previously described AMPK effects are
mainly anti-proliferative and anti-tumourigenic. However, dif-
ferent studies demonstrated that AMPK activation mediated by
the reduction of ATP/AMP ratio promotes cellular survival under
stressful metabolic conditions that are characteristic of tumour
microenvironment [22,25,31]. Indeed, cancer cells have profound
alterations in their metabolism that are fundamental for survival in
tumour microenvironment and metastatic niche. Tumour cells are
largely dependent on the biosynthesis of macromolecules and the
tightened maintenance of appropriate cellular redox status [25].
The idea that AMPK activation should in turn allow cell sur-
vival and quiescence under unfavourable conditions have been
supported by Buzzai et al. [31] who demonstrated that AMPK
activation is capable to revert cell death promoted by glucose
deprivation of Akt-expressing glioblastoma cells. Although the
intracellular pathway triggered by AMPK to impair cell death has
not been completely elucidated, the involvement of HIF-1 and

(© 2014 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/)
which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

183


http://creativecommons.org/licenses/by/3.0/

184

B. M. Andrade and D. Pires de Carvalho

maintenance of cellular NADPH homoeostasis have been pro-
posed [22,32]. Although some evidence shows that AMPK-
deficient fibroblasts have increased levels of HIF-lor and its
downstream targets, other studies have asserted that AMPK activ-
ation up-regulates HIF-1 and VEGF (vascular endothelial growth
factor) expression under hypoxic conditions [26,33]. Some au-
thors claim that the expression of HIF1le and HIF2« are associ-
ated with a poor prognosis in thyroid tumours [34,35], but more
studies are necessary to clarify whether these findings are related
to AMPK regulation in thyroid cancer.

Recently, the participation of ROS (reactive oxygen spe-
cies)/AMPK activation as fundamental for the Warburg effect
in cancer cells has been confirmed [36]. In fact, nutrient defi-
ciency increases ROS production that in turn activates AMPK
that triggers pyruvate dehydrogenase kinase activation and pyr-
uvate dehydrogenase phosphorylation. This pathway seems to be
essential to drive cancer cells to increase glycolysis to produce
ATP, even in aerobic condition.

Recent advances in the field of tumour progression have shown
that CTC (circulating tumour cells) are metabolic and genetic-
ally heterogeneous [37]. Based on these findings, it is tempting
to speculate which are the characteristics of the tumour cell that
are important for cancer dissemination and increased risk of re-
currence. Surely, CTC are capable of surviving in unfavourable
conditions and the metastatic niche development might depend
on these special features.

METFORMIN, AMPK AND THYROID
NODULES IN DIABETIC PATIENTS

The strikingly findings that type 2 diabetic patients have increased
incidence of thyroid nodules and thyroid volume [38] are under
current investigation by several other groups. Also, insulin res-
istance and hyperinsulinaemia were identified as risk factors for
developing DTC [39].

Subsequent reports described that metformin, a drug used for
the management of type 2 diabetes, might present antineoplastic
effects in various human cancers [40,41]. Taking into consid-
eration the mechanism of action of the antidiabetic drug met-
formin, the AMPK-signalling pathway has become an interest-
ing target in thyroid cancer studies. In the intracellular level,
metformin inhibits mitochondrial complex I, which leads to an
altered AMP/ATP ratio and the activation of AMPK [40,42].
Apart from the AMP/ATP ratio disturbance, metformin might
also change mitochondria ROS production and thus secondar-
ily promote AMPK activation [43]. It is now believed that the
long-term activation of AMPK by increased ROS generation in
cancer cells leads to mTORCI1 complex suppression, resulting
in cell death, which was demonstrated for sorafenib effects on
cell energy metabolism [44].

Studies on various cancer cell lines and animal models demon-
strated that metformin inhibits tumour growth via the activation
of AMPK and the inhibition of mMTOR/S6K (S6 kinase) signalling

pathway [41,45,46]. It is noteworthy that these studies report the
association between cancer incidence in diabetics treated with
metformin compared with those using other medications (typic-
ally sulphonylureas or insulin), and this evidence is so far not
enough to prove a causal link.

AMPK AND THYROID CANCER

The AMPK pathway has not been extensively studied in thyroid
cancer and until recently the expression and function of AMPK
in this type of cancer was not evaluated so far. In a recent report,
AMPK expression was first described in the human thyroid gland
and both its expression and activity were shown to be strongly up-
regulated in PTC [21]. Using a TMA (tumour micro array) slide,
total and phosphorylated AMPK were analysed by immunohisto-
chemistry, as well as phosphorylated ACC expression in normal
and PTC samples from the same patients. Interestingly, AMPK
pathway activation did not occur in adenomas when compared
with the non-neoplastic tissue from the same patients. More data
are now required to give us a comprehensive understanding about
the role of AMPK pathway in differentiated and undifferentiated
thyroid carcinomas, and its role in carcinogenesis.

Using thyroid cancer cell line expressing either wild-type
BRAF or V600OE-mutant BRAF, Choi et al. [47] observed that
AICAR treatment induced a decrease in the cell proliferation
rate associated with increased S-phase cell-cycle arrest and ap-
optosis. Interestingly, AMPK suppressed the phosphorylation of
ERK (extracellular-signal-regulated kinase) and p70S6K (mTOR
target), in BRAF V600E mutant thyroid cancer cells, but rather
increased their phosphorylation in wild-type cells [47]. These
previous results confirm the anti-proliferative effect of AMPK in
thyroid cancer cells, as also demonstrated for other carcinomas.
However, based on the well-described negative effect of AMPK
on the mTOR pathway in other tissues, it is tempting to specu-
late whether AMPK activation also promote mTORCI inhibition
in normal thyroid cells, as well in the different tumours derived
from the thyroid follicular cell.

The mTOR pathway is also up-regulated in DTC [48], and
mTOR inhibition by rapamycin increases normal rat thyroid
cell iodide uptake [49]. Although the interrelationship between
AMPK and mTOR is well described in metabolic tissues such
as skeletal muscle, liver and adipose tissue, the AMPK abil-
ity to inhibit mTOR has still to be demonstrated in thyroid cell
physiology and thyroid cancer. Taking into consideration that in
the normal thyroid both the AMPK [18] and the mTOR [49]
pathways inhibit iodide uptake, one can speculate that no matter
the balance between these two pathways, just the activation of
one of them can explain the decrease of iodide uptake. The same
rational is true regarding the glucose uptake ability, since mTOR
increases GLUT1 expression via HIFl« in some tumours [26],
while AMPK pathway also leads to increased glucose uptake and
hexokinase activity in normal thyrocytes [19].
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Recently, Antico Arciuch et al. [50] described an elegant model
of tumourigenesis using mice with thyroid-specific PTEN (phos-
photyrosine phosphatase) deficiency. The thyroids of PTEN-
deficient animals have constitutively activated the PI3K (phos-
phoinositide 3-kinase) pathway, leading to hyperplastic thyroid
glands at birth and the development of thyroid follicular ad-
enomas and metastatic follicular carcinomas late in adult life.
Constitutive PI3K activation initiates the remodelling of cell en-
ergy metabolism through a decrease in the expression of the
enzymes of the TCA (tricarboxylic acid) cycle, with reduced
mitochondria respiratory capacity and increased metabolic flux
through glycolysis, as indicated by the dramatic increase in lact-
ate production. Interestingly, Pten™ =/~ mice had a strong de-
creased in AMPK activity (AMPK phophorylation on Thr!"?),
mainly through PI3K and PKA-mediated AMPK phosphoryla-
tion at Ser*®. In order to reactivated AMPK, they treated the
mutants with AICAR for 4 weeks. They observed a restoration in
the expression of TCA enzymes and a reversion in the glycolytic
switch induced by constitutive PI3K activation. Also, AMPK re-
activation led to a slower growth rate in mutant glands compared
with untreated mutants, which was confirmed by a drastically
reduced thyroid BrdUrd (bromodeoxyuridine) incorporation in
AICAR treated, when compared with that of untreated mice.
These findings are in agreement with the tumour suppressor role
of AMPK, but are not fully concordant with the finding of in-
creased AMPK signalling pathway that was detected in human
thyroid cancer samples.

Metformin treatment inhibited growth and induced apoptosis
in anaplastic thyroid cancer cell lines [51]. Furthermore, Klubo-
Gwiezdzinska et al. [52] showed that metformin also inhibited
growth of medullary thyroid cancer cells in a dose- and time-
dependent manner, with decreased expression of cyclin D1. In an
attempt to investigate the signalling pathway that mediates these
effects of metformin in medullary cancer cells, the authors found
an inhibition of mTOR/p70S6K/pS6 signalling and the down-
regulation of pERK. The authors also showed that eight out of
the 14 (57 %) human medullary tumours analysed had increased
phospho-p70S6K expression compared with the corresponding
normal thyroid tissue. However, the treatment with AMPK inhib-
itor (compound C) or AMPK silencing did not prevent growth
inhibitory effects of metformin in medullary cancer cells, which
suggest that metformin modulates different pathways besides
AMPK signalling to induce its anti-proliferative effects. More
recently, the same group demonstrated that diabetic patients that
were treated with metformin for more than 4 years had signific-
antly smaller thyroid tumour size then diabetic and non-diabetic
patients not treated with metformin. These authors demonstrate
that tumours from patients treated with metformin show a lower
level of phospho-p70S6K compared with the non-treated diabetic
group [53].

The new findings of higher AMPK activation in human papil-
lary thyroid cancer in relation to benign lesions and the possibility
that this pathway modulate cell growth, apoptosis and survival
raises several questions that need to be answered in order to
better define whether AMPK could be a novel target in thyroid
cancer patients. The differentiated papillary thyroid cancer is in-
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dolent and most of these tumours do not present an aggressive
behaviour. It is intriguing that this same tumour subtype seems
to express high levels of both mTOR [47] and AMPK [21] sig-
nalling pathways. The most important question is whether the
over activation of these proteins is only implicated in tumour cell
survival under stressful conditions, or they are fundamental for
tumour growth and invasion. Thus, it is now important to better
define which is the interplay between these two pathways during
tumour progression and metastatic spread.

FINAL REMARKS

AMPK functions as a tumour suppressor gene in several cancer
subtypes, and accordingly its activation in tumour cells lead to
cell death. As shown, AMPK activation in normal cells or its
loss of function in tumours can also be the molecular pathway
implicated in the higher glucose uptake that occurs during the
tumour metabolic shift known as the Warburg effect. Thus, it is of
great importance to better understand the pleiotropic actions of
the different AMPK isoforms, their levels of activation and their
perspectives in cancer cell biology. Since AMPK pathway is
overexpressed in primary differentiated tumours of the human
thyroid, it is now intriguing to know what are the consequences
for tumour cells of its further activation or rather silencing. Also,
the study of AMPK pathway in advanced and the undifferentiated
anaplastic thyroid cancer can bring further insight into the role
of AMPK in the different stages of cancer progression.
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